

AZDHS Certification # 00000005LCMI00301434

FINAL

CMS Ventures - GSI

13454 N. Black Canyon Hwy Phoenix, AZ 85029 14804570860

Lic#: 00000014ESNA15249640

Sample: S311037-01 CC ID#: 2311C4L0036.3633

Lot#: N/A

Batch#: 0901BLRSH Batch Size: N/A

Sample Name: Rattlesnake Haze

Strain Name: Rattlesnake Haze

Matrix: Flower

Amount Received: 10.8327 g

Sample Collected: 11/10/2023 14:00 Sample Received: 11/14/2023 11:18

Report Created: 11/21/2023 16:35

SAFETY

		THE PARTY OF THE P	
			1
1			4
HE			
	4		

Microbials	Residual Solvents	Mycotoxins	Pesticides
PASS	NOT TESTED	NOT TESTED	PASS

Metals

PASS

Terpenes

1.22%

Total Terpenes (Q3)

Cannabinoid Results

32.2%

Sum of Cannabinoids (Q3)

28.4%

Total THC

<LOQ

Total CBD

RATIO

THC **CBD**

Total THC= THCA * 0.877 + d9-THC Total CBD= CBDA * 0.877 + CBD

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434 Lillian Blenney

Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

FINAL

CMS Ventures - GSI 13454 N. Black Canyon Hwy Phoenix, AZ 85029 14804570860 Lic#: 00000014ESNA15249640 Sample: S311037-01 CC ID#: 2311C4L0036.3633

Lot#: N/A

Batch#: 0901BLRSH Batch Size: N/A

Sample Name: Rattlesnake Haze

Strain Name: Rattlesnake Haze Matrix: Flower

Amount Received: 10.8327 g

Sample Collected: 11/10/2023 14:00 Sample Received: 11/14/2023 11:18

Report Created: 11/21/2023 16:35

Cannabinoids by HPLC-DAD - Compliance

Date Analyzed: 11/17/2023 Analyst Initials: DRF SOP: C4-SOP-CHEM-003

Terpenes by GC-FID- Noncompliance

Date Analyzed: 11/17/2023 Analyst Initials: NSS SOP: C4-SOP-CHEM-012

Analyte	LOQ	Result	Result	Qualifier	
	%	%	mg/g		
THCA	0.569	30.8	308	D1	
d9-THC	0.569	1.40	14.0	D1	
d8-THC	0.569	<loq< td=""><td>< LOQ</td><td>D1</td><td></td></loq<>	< LOQ	D1	
CBDA	0.569	<loq< td=""><td>< LOQ</td><td>D1</td><td></td></loq<>	< LOQ	D1	
CBD	0.569	<loq< td=""><td>< LOQ</td><td>D1</td><td></td></loq<>	< LOQ	D1	
CBG	0.569	<loq< td=""><td>< LOQ</td><td>D1</td><td></td></loq<>	< LOQ	D1	
CBN	0.569	<loq< td=""><td>< LOQ</td><td>D1</td><td></td></loq<>	< LOQ	D1	
CBC	0.569	<loq< td=""><td>< LOQ</td><td>D1</td><td></td></loq<>	< LOQ	D1	
Sum of Cannabinoids	0.569	32.2	322	D1, Q3	
Total THC	0.569	28.4	284	D1	
Total CBD	0.569	<loq< td=""><td>< LOQ</td><td>D1</td><td></td></loq<>	< LOQ	D1	
Total Cannabinoids	0.569	28.4	284	D1, Q3	

Total THC= THCA * 0.877 + d9-THC	Total CBD= CBDA * 0.877 + CBD.

Analyte	LOQ	Result	Result	Qualifier
	%	%	mg/g	
beta-Caryophyllene	0.027	0.264	2.64	Q3
Linalool	0.027	0.228	2.28	Q3
Limonene	0.027	0.225	2.25	Q3
beta-Myrcene	0.027	0.223	2.23	Q3
beta-Pinene	0.027	0.077	0.773	Q3
alpha-Humulene	0.027	0.075	0.752	Q3
cis-Nerolidol	0.027	0.049	0.493	Q3
alpha-Pinene	0.027	0.049	0.495	Q3
alpha-Bisabolol	0.027	0.031	0.312	Q3
p-Cymene	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
gamma-Terpinene	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Caryophyllene Oxide	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Eucalyptol	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Guaiol	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Geraniol	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Isopulegol	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Terpinolene	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Ocimene	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
alpha-Terpinene	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
3-Carene	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Camphene	0.027	<loq< td=""><td>< LOQ</td><td>Q3</td></loq<>	< LOQ	Q3
Total Terpenes		1.221	12.23	

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Jillian Blaney Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

FINAL

CMS Ventures - GSI 13454 N. Black Canyon Hwy Phoenix, AZ 85029 14804570860 Lic#: 00000014ESNA15249640

Sample: S311037-01 CC ID#: 2311C4L0036.3633 Lot#: N/A

Batch#: 0901BLRSH Batch Size: N/A

Sample Name: Rattlesnake Haze

Strain Name: Rattlesnake Haze

Matrix: Flower

Amount Received: 10.8327 g

Sample Collected: 11/10/2023 14:00 Sample Received: 11/14/2023 11:18

Report Created: 11/21/2023 16:35

Pesticides by LC/MS/MS - Compliance

Date Analyzed: 11/15/2023 Analyst Initials: JCB SOP: C4-SOP-CHEM-006

Pass

Analyte	LOQ	Limit	Result	Qualifier	Status	Analyte	LOQ	Limit	Result	Qualifier	Status
	ppm	ppm	ppm				ppm	ppm	ppm		
Abamectin	0.115	0.5	<loq< td=""><td></td><td>Pass</td><td>Imazalil</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>		Pass	Imazalil	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Acephate	0.096	0.4	<loq< td=""><td></td><td>Pass</td><td>Imidacloprid</td><td>0.096</td><td>0.4</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>		Pass	Imidacloprid	0.096	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Acetamiprid	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Kresoxim-methyl</td><td>0.096</td><td>0.4</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Kresoxim-methyl	0.096	0.4	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Aldicarb	0.096	0.4	<loq< td=""><td></td><td>Pass</td><td>Malathion</td><td>0.048</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Malathion	0.048	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Azoxystrobin	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Metalaxyl</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Metalaxyl	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Bifenazate	0.048	0.2	<loq< td=""><td>L1</td><td>Pass</td><td>Methiocarb</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1</td><td>Pass</td></loq<></td></loq<>	L1	Pass	Methiocarb	0.048	0.2	<loq< td=""><td>L1</td><td>Pass</td></loq<>	L1	Pass
Bifenthrin	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td><td>Methomyl</td><td>0.096</td><td>0.4</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	V1	Pass	Methomyl	0.096	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Boscalid	0.096	0.4	<loq< td=""><td></td><td>Pass</td><td>Myclobutanil</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>		Pass	Myclobutanil	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Carbaryl	0.048	0.2	<loq< td=""><td></td><td>Pass</td><td>Naled</td><td>0.120</td><td>0.5</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Naled	0.120	0.5	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Carbofuran	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Oxamyl</td><td>0.240</td><td>1.0</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Oxamyl	0.240	1.0	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Chlorantraniliprole	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Paclobutrazol</td><td>0.096</td><td>0.4</td><td><loq< td=""><td>L1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Paclobutrazol	0.096	0.4	<loq< td=""><td>L1</td><td>Pass</td></loq<>	L1	Pass
Chlorfenapyr	0.480	1.0	<loq< td=""><td>V1</td><td>Pass</td><td>Permethrins</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>	V1	Pass	Permethrins	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Chlorpyrifos	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Phosmet</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>I1, V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Phosmet	0.048	0.2	<loq< td=""><td>I1, V1</td><td>Pass</td></loq<>	I1, V1	Pass
Clofentezine	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td><td>Piperonyl butoxide</td><td>0.480</td><td>2.0</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>	V1	Pass	Piperonyl butoxide	0.480	2.0	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Cyfluthrin	0.480	1.0	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Prallethrin</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Prallethrin	0.048	0.2	<loq< td=""><td>L1</td><td>Pass</td></loq<>	L1	Pass
Cypermethrin	0.240	1.0	<loq< td=""><td>V1</td><td>Pass</td><td>Propiconazole</td><td>0.096</td><td>0.4</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	V1	Pass	Propiconazole	0.096	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Daminozide	0.480	1.0	<loq< td=""><td>L1</td><td>Pass</td><td>Propoxur</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>	L1	Pass	Propoxur	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Diazinon	0.048	0.2	<loq< td=""><td>L1</td><td>Pass</td><td>Pyrethrins</td><td>0.155</td><td>1.0</td><td><loq< td=""><td>I1, L1, V1</td><td>Pass</td></loq<></td></loq<>	L1	Pass	Pyrethrins	0.155	1.0	<loq< td=""><td>I1, L1, V1</td><td>Pass</td></loq<>	I1, L1, V1	Pass
Dichlorvos	0.048	0.1	<loq< td=""><td></td><td>Pass</td><td>Pyridaben</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>		Pass	Pyridaben	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Dimethoate	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Spinosad</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Spinosad	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Ethoprophos	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td><td>Spiromesifen</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	V1	Pass	Spiromesifen	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Etofenprox	0.096	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Spirotetramat</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Spirotetramat	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Etoxazole	0.048	0.2	<loq< td=""><td>L1</td><td>Pass</td><td>Spiroxamine</td><td>0.096</td><td>0.4</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	L1	Pass	Spiroxamine	0.096	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Fenoxycarb	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Tebuconazole</td><td>0.096</td><td>0.4</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Tebuconazole	0.096	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Fenpyroximate	0.096	0.4	<loq< td=""><td>V1</td><td>Pass</td><td>Thiacloprid</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	V1	Pass	Thiacloprid	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Fipronil	0.096	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Thiamethoxam</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Thiamethoxam	0.048	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Flonicamid	0.240	1.0	<loq< td=""><td>V1</td><td>Pass</td><td>Trifloxystrobin</td><td>0.048</td><td>0.2</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>	V1	Pass	Trifloxystrobin	0.048	0.2	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Fludioxonil	0.096	0.4	<loq< td=""><td>V1</td><td>Pass</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	V1	Pass						
Hexythiazox	0.240	1.0	<loq< td=""><td>L1, V1</td><td>Pass</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	L1, V1	Pass						

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Jillian Blaney Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

CMS Ventures - GSI 13454 N. Black Canyon Hwy Phoenix, AZ 85029 14804570860 Lic#: 00000014ESNA15249640

CC ID#: 2311C4L0036.3633 Lot#: N/A **FINAL**

Batch#: 0901BLRSH Batch Size: N/A

Sample: S311037-01

Sample Name: Rattlesnake Haze

Strain Name: Rattlesnake Haze Matrix: Flower

Amount Received: 10.8327 g

Sample Collected: 11/10/2023 14:00 Sample Received: 11/14/2023 11:18

Report Created: 11/21/2023 16:35

Metals by ICP-MS - Compliance

Pass

Date Analyzed: 11/15/2023 Analyst Initials: RSS SOP: C4-SOP-CHEM-008

Date / thai y 200. 11/10/2020	7 thatyot initial	0. 1100 001 .	OT COL OLL	W 000	
Analyte	LOQ	Limit	Result	Qualifier	Status
	ppm	ppm	ppm		
Arsenic	0.099	0.4	<loq< td=""><td>L1</td><td>Pass</td></loq<>	L1	Pass
Cadmium	0.099	0.4	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Lead	0.397	1.0	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Mercury	0.397	12	<1.00		Pass

Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

CMS Ventures - GSI 13454 N. Black Canyon Hwy Phoenix, AZ 85029 14804570860 Lic#: 00000014ESNA15249640

Sample: S311037-01 CC ID#: 2311C4L0036.3633 Lot#: N/A

Batch#: 0901BLRSH **FINAL** Batch Size: N/A

Sample Name: Rattlesnake Haze

Strain Name: Rattlesnake Haze Sample Collected: 11/10/2023 14:00 Matrix: Flower Sample Received: 11/14/2023 11:18 Amount Received: 10.8327 g

Report Created: 11/21/2023 16:35

Microbials Pass

E. coli by 3M Petrifilm- Compliance

Date Analyzed: 11/16/2023 Analyst Initials: DHV SOP: C4-SOP-MICRO-010

Analyte	LOQ	Limit	Result	Qualifier Status
	CFU/g	CFU/g	CFU/g	
E. coli	10	100	<10	Pass

Aspergillus and Salmonella by qPCR - Compliance

Date Analyzed: 11/21/2023 Analyst Initials: DHV SOP: C4-SOP-MICRO-012

Analyte	Result	Qualifier Status
	in one gram	
Salmonella spp.	Not Detected	Pass
Aspergillus	Not Detected	Pass

Aspergillus includes species flavus, fumigatus, niger, and terreus. Salmonella and Aspergillus by Medicinal Genomics

Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

FINAL

CMS Ventures - GSI 13454 N. Black Canyon Hwy Phoenix, AZ 85029 14804570860 Lic#: 00000014ESNA15249640

Sample: S311037-01 CC ID#: 2311C4L0036.3633 Lot#: N/A

Batch#: 0901BLRSH Batch Size: N/A

Sample Name: Rattlesnake Haze

Strain Name: Rattlesnake Haze Sample Collected: 11/10/2023 14:00 Matrix: Flower Sample Received: 11/14/2023 11:18 Amount Received: 10.8327 g Report Created: 11/21/2023 16:35

Notes and Definitions

Item	Definition
D1	LOQ and sample results were adjusted to reflect sample dilution.
I1	Interference. Relative intensity of a characteristic ion in the sample analyte exceeded 30% of the relative intensity in the reference spectrum.
L1	The percent recovery of the LCS was above the control limit for the test but analyte was not detected above the Action Limit in Table 3.1.
Q3	Testing result is for informational purposes only and cannot be used to satisfy dispensary testing requirements in R9-17-317.01(A) or labeling requirements in R9-17-317. Testing result is not accredited under ISO 17025.
V1	CCV recovery exceeded control limits but the sample analyte concentration was below maximum allowable concentrations in table 3.1
< LOQ	Results below the Limit of Quantification.
Limit	Maximum allowable concentration as defined by Table 3.1 in Arizona Administrative code (A.A.C.) Title 9, Chapter 17
CFU/g	Colony forming units per gram
ppm	Parts per million
ppb	Parts per billion
NT	Not Tested
C f C	annahinaida - TUCA - 40 TUCA - CDDA - CDD - 40 TUCA - CDC - CDA - CDC

Sum of Cannabinoids = THCA + d9-THC + CBDA + CBD + d8-THC + CBG + CBN + CBC

Total Cannabinoids = Total THC + Total CBD + d8-THC + CBG + CBN + CBC

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Technical Laboratory Director